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ABSTRACT

Bayesian techniques are used to evaluate the seeding factor on
rainfall and its probability distribution in the Experimental Meteorology
Laboratory randomized dynamic seeding experiments on isolated cumuli in
Florida. A framework is constructed for Tater use of these tools with
the randomized multiple cumulus seeding experiment in the 4000 n mi?
target area.

The data used are the cloud base integrated rainfall volumes ob-
tained by a calibrated 10-cm radar which was tested against a gage net-
work. The analyses are based on the finding that the seeded and control
data are both well fitted by a gamma distribution with the same shape
parameter. Since seeding alters only the scale parameter, Bayes equation
is adapted to finding the distribution of the scale parameter and/or the
seeding factor directly. The natural distribution is determined by the
best-fit gamma function to the control cloud data. A wide variety of
prior distributions of scale parameter are used, with prior expected
seeding factors ranging from 0.5 to three. After seeing the seeded cloud
data, posterior expected seeding factors range from slightly below two to
slightly above three, depending upon the prior distribution assumed. The
95 percent integrated probability range for seeding factor is established,
which is not extended to values Tess than one {reduction in rainfall)
even under absurdly biased initial assumptions.

The final section endeavors to determine how many observations
are required to establish the parameters of the gamma distribution
adequately for seeding factor determinations. A program is devised to
generate random ''rain'' observations from a predetermined gamma distribu-
tion. Then the parameters are recovered in the same way as done for the
data, namely with a program based on the principle of maximum entropy.




ON THE USE OF GAMMA FUNCTIONS AND BAYESIAN ANALYSIS
IN EVALUATING FLORIDA CUMULUS SEEDING RESULTS

Joanne Simpson, Jane C. Eden, Anthony Olsen and Jacques Pézier
. INTRODUCTION

The randomized single cumulus experiments in south Florida in 1968
and 1970 were only the first phase in a continued program to develop dyn-
ami ¢ seeding as a tool in water management, in convective cloud research,
and in eventual severe storm modification. The Experimental Meteorology
Laboratory {EML) is now at work on an extended series of multiple cumulus
seeding experiments in a 4000 n mi 2 target area, which present much
greater obstacles both scientifically and operationally.

Aspects of the EML randomized dynamic seeding experiments on single
cumuli have already been reported in the literature (Simpson et al., 1970;
1971; Simpson and Woodley, 1971). Classical statistical analyses
showed that the seeded single clouds grew higher and rained more than the
controls, with an average radar-measured rainfall difference of 270
acre-ft. Differences were significant at the 5 percent level or better,
using several types of statistical tests. Most of the tests were executed
on a set of '"transformed'' data, which were obtalned by taking the fourth
root of the total rainfall obtained by radar integration from each cloua.
This transformation was made to eliminate the effects of extremes and to
render the data distribution more nearly normal. Using this procedure,
we were able to obtain a quantitative estimate of the seeding factor on
single cloud rainfall, namely that it slightly exceeded three
(Simpson et al., loc. cit., 1971). A particularly interesting result

with the transformed data sets was that they were well fitted by gamma




distributions, with virtually unchanged shape parameters between seeded
and control sets (Simpson, 1972). The data are presented in table 1.
Details of how they were obtained have been explained by Woodley (1970),
and Woodley and Herndon (1970).

Table 1. Single Cloud Data for 1968 and 1970.

Total cloud 1lifetime
Seeded rain Control rain
Acre-feet Fourth root Acre-feet Fourth root
(raw) (transformed) (raw) (transformed)
129.6 3.37405 26.1 2.26027
31.4 2.36719 26.3 2.26459
2,745.6 7.23868 87.0 3.05408
489.1 L.70272 95.0 3.12199
430.0 4,55373 372.4 L.39291
302.8 L1747 0 0 (1)*
119.0 3.30283 17.3 2.03944
k1 1.42297 : 24 .4 2.22253
92.4 3.1004 11.5 1.84151
17.5 2.04531 321.2 4.23344
200.7 3.76389 68.5 2.87689
274.7 4,07113 81.2 3.00185
274.7 L,07113 : 47.3 2.6225
7.7 1.6658 28.6 2.31255
1,656.0 6.37918 830.1 5.36763
978.0 5.59223 345.5 4 31134
198.6 3.754 1,202.6 5.88885
703.4 5.14992 36.6 2.45963
1,697.8 6.41906 4.9 1.48782
334.1 L.27532 4.9 1.48782
118.3 3.29797 51.1 2.53198
255.0 3.99609 29.0 2.3206
115.3 3.27686 163.0 3.57311
242.5 3.94619 244 .3 3.95349
32.7 2.39132 147.8 3.48673
Lko.6 2.52424 21.7 2.15832

l
rkl

Since some of our computer programs involve products of the data and
will not accept zero, one acre-ft has usually been substituted for zero
for this observation.

In 1971 the senior author attended a Decision Analysis course at

Dartmouth College, taught by the fourth author, with a primary purpose of




adapting Bayesian analysis to the design and analysis of the EML modifi-
cation experiments. Used together with the properties of gamma functions,
Bayesian techniques have produced some new results for the single cloud
experiments and opened up promising approachés to the multiple cloud
seeding or area experiments. Here we present mainly the results from
applying the techniques to the single cloud data while building up the
framework to use with the area data, for which preliminary results will

be presented in a sequel paper.

With the single clouds, the sample of cases is more extensive (26
seeded and 26 control cases) than we wiTlfpfobably be able to cbtain for
some years in the area experiment. Furthermore, the radar calibration
for 1968 and 1970 was found {Woodley and Herndon, 1970; Herndon et al.,
1971) to be quite accuratel. Hence these data appear ideal to adaptation

and proving out the application of Bayesian techniques to cumulus modifi-

cation. Errors in the data are considered in other EML reports; in this

one they are assumed correct as given in table 1.

2. BACKGROUND FOR THE BAYESIAN APPROACH AND THE
APPLICATION OF GAMMA DISTRIBUTIONS TO THE DATA

The Bayesian approach to seeding problems offers major attractions
and also poses some difficulties. One attraction is that the use of
Bayes equation permits a numerical assessment of the magnitude of a seed-
ing factor, together with a probability distribution for it, whose stand-
ard deviation goes down as the data sample increases. This type of result

contains considerably more information than does the mere rejection of the
YUnfortunately raingage comparisons suggest that it deteriorated in 1971,
the second year of the area experiment, further complicating evaluation

of that already too sparse data sample.




null hypothesis which is all that many classical tests seek to
establish.

We reject the common criticism of the Bayesian approach which
contends that subjective prior probabilities may introduce bias: firstly,
because we usually use diffuse prior probabilities and secondly, because
we test the sensitivity of our results to a very large number and many
different types of prior probability distributions.

A very real difficulty, however, in applying Bayesian statistics
to weather modification is that to do so we must know the distribution
of natural property or properties to be modified. This requirement en-
tails that we know the distribution function and its sufficient statist-
ics, which generally implies two moments of the distribution. It also
implies that we assume that the natural distribution function remains
statiopary in time. In our work, this assumption is far less dangerous
than in many other uses of the approach, sincerwe screen out all but fair
convective days in south Florida summers.

A key first result was that the single cloud transformed (fourth
root) rainfall data was well fitted by a gamma distribution. The gamma

probability density function may be written

p(R} = O R e (1)
where p(R) is the probability density of a rainfall amount, R. The
scale of the distribution is determined by the parameter B and the
shape by the parameter o. I is the gamma function (cf. Pearson et al.,
1957). The first two moments of the gamma function are well known to

be {Kendall and Stewart, 1963):




<R> = /B

=
[
il

and (2)
u, = 0% = a/8?
where <R> is the expected value and o® is the variance. Therefore, the

coefficient of variation V is

o
<R>

v

m

(3)

-

We developed a computer program (DAMAX) utilizing the principle
of maximum entropy (Tribus, 1969, p. 197) to find the best fit distribu-~
tion (from a desired number of possible distributions) for any set of data.
The program also calculates the key parameters for each distribution, e.q.
o and B for the gamma distribution®? and also a chi-square measure of
goodness of fit. An early version of the program is listed in a report
by Simpson & Pezier (1971) and the latest version can be obtained from
EML on request.

Using this program we found (Simpson, 1972) that the gamma distrib-
ution excellently fit the EML single cloud transformed rainfall data, for
both seeded and control populations separately. 1t turned out that the
coefficient of variation was virtually identical for the two populations,
which differed in their expected values. Thus the shape parameter appeared
to be unaffected by seeding, which only diminished the scale parameter, so

that the whole distribution was moved toward higher rainfalls. With

V =~ 0.377, 1t also turns out conveniently that the shape parameter is
2 which are shown to be identical to those obtained by classical

statistical methods.




about 7, an integer, which greatly simplifies calculations using (1).
Sequel work has treated the data without any transformations, hereafter

called "raw' data, in which o is not an integer.

3. COMPOSITE HYPOTHESIS TESTING WITH BAYES EQUAT!ON
TO ESTIMATE THE MAGNITUDE OF THE SEEDING FACTOR -
SINGLE CLOUD TRANSFORMED DATA

One of the fine features of Bayesian statistics is that it can be
used to estimate the magnitude of the seeding factor and also the inte-
grated probability that its magnitude lies between any predetermined
l1imits. 1In the following we will apply Bayes equation to the scale para-
meter B, and directly to the seeding factor, using both raw and trans-
formed data. Transformed or fourth root data will be denoted by primed
quantities throughout, while unprimed quantities refer to raw data.

First, we use Bayes eguation to obtain a probability distribution
for the gamma function scale parameter B', using transformed data, namety

p(8'|D') = p(B') p(D'[B")/p(D") (1)
where p{B'|D') is the probability density distribution of the parameter
given the seeded data. p(B') is the prior probability assignment of B'.
p(D'lB') is the probability of the data, given B', while the denomin=-
ator, p(D'), is the probability of the data, a normalizing factor only.

It is assumed that both seeded and control distributions are gamma distrib-




utions with a' = 7 in the transformed sets, while B' {(control) was

evaluated as 2.38620 from <R'> control = 2.93353 (acre-ft) 25

The next preliminary step is to relate B' to seeding factor F;
results are presented in table 2 and figure 1. Note that the tabulated
seeding factor always relates to raw data. We obtain the B' in the

table as a function of seeding factor as follows:

(5)
<R> seeded . . .
F = B> control R is raw rainfall in acre-ft
(6)
O"-I
B8' (control): = <RTS = <g|>
' control control
(7)
1
B' (seeded) = % _ where we assume for the moment that
( <R'> seeded
(8)
<R'> seeded = <F> 2% <R'>
control

This approximation is discussed at the end of the current section
and is shown to cause only a slight positive bias for seeding factors

in the range of Interest.
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|

Pigure 1. Graph showing relationship between seeding factor F and
gamma function scale parameter B' for single cloud transformed
( fourth root) data. F and B' are determined as specified by

equations (5) and (6).




Table 8. Relation Between Seeding Factor F and B' Gamma
Distribution's Seale Parameter.

Single Cloud Transformed Data

o'= 7

i

37460
.83769
.52310
.38620
.00650 |
.81312
.68730
. 59575
46701
.34186

ocowihm
—_ s L N NN N W

oO~luyidw N = O o0

J—

The analysis with (4) is carried out in two ways on the transform-
ed data. The first way assumes a gamma function for the prior probability
distribution of B'and the second assumes a uniform distribution for the

prior.

In the first approach
Ky K=l -K;B'
Ko ]
p(B) = B e (9)
PiKlj

where K; is the shape parameter and K, the scale parameter of the prior

probability distribution assumed for B'.

Now we know that

18:= - TRI




where n is the number of seeded cases and RH is the transformed rainfall

in the ith seeded case. Substituting (10) and (9) into (4) we find

Iy s

n
. R, + K)”“IJ’ K1 'noa'+ Ki=1 -~P ; §1 R'i + K,
T (rlua‘+§) B © ()
1

p (8D} =(i
The normalizing constant is found from the exponents, since we know the
resulting distribution is also a gamma distribution. Now since n = 26
and o' = 7, the shape parameter of the posterior B'detribution is very
large, namely here 182 + Kl. According to Thoma‘when the scale parameter
exceeds about ten, the gamma distribution degenerates, for all practical
purposes, into a Gaussian distribution. Therefore, with this approach our
posterior B' distributions can be treated as Gaussian, which means that

the probability is about 95% that the value of Bwies within two standard

deviations of the expected value. This information is used later in

tables 3 and 4. We further know that

Ky
1! nO{.’+ Kl OLI+ F_
<B|D D= T-_—— = K (]2)
= 2
IR+ K, Rit o~
i=1
so that
. - :
Tim <g|p'>= - (13)
n—~ large RE
and
1
V2 (B[DY = —p (14)

no + Kl

! Personal communication

10




With any gamma function for the prior probability distribution on B' we
find that in the i1imit of Targe n

B! = 1.80459 so that F = 3.07 (15)
n —large

in fine agreement with the results of the classical statistical analysis
of Simpson et al., {1971). For this analysis we use two prior B'dis-
tributions, the first with K= 12 (peaked, see fig. 2) and the second
with Ky = 2 {much flatter, see fig. 3).

Results for both priors with a wide range in the prior expected
value of B' are presented in tables 3 and 4. Figures 2 and 3 compare
plots of both prior (dashed) and posterior (sclid) probability density

distributions for selected cases from the tables.

Table 3. Transformed Single Cloud Data.

K, =
Prior B'Peak;d G;ima Function Posterior B'Gaussian
Prior <g'> F Post <R'> F F for 95% Prob.
2.83769 0.5 1.84617 2.8 1.4 - 5.2
2.38620 ] 1.83222 2.9 1.5 - 5.3
2.0065 2 1.81590 2.99 1.53 - 5.4
1.81312 3 1.80512 3.05 1.58 - 5.57
1.59575 5 1.79010 3.15 1.60 - 5.8

1.34348 10 1.76709 3.40 1.87 - 6.0
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Figure 2a. Prior and posterior probabtility distributions of B’,
the scale parameter of gamma distribution. The prior proba-
bility distribution (dashed) was Ky = 12 and K, is chosen so
that the expected value of prior B corresponds to a seeding
factor of 0.5 (rainfall reduction by a faector of 2). The
posterior probability distribution of B' (solid) is deter-
mined by inserting the seeding rainfall data in Bayes'
equation.
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Figure 8b. Same as 2a, except that the expected value of the
B' corresponds to F = 1, i.e., seeding has no effect.
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POSTERIOR B ——
~20k POSTERIOR < F > = 305
3 .
Oys5L —
{0 _
/TN
05k / \ _
/ J N
/{ | Nep ! I | I ;
O 1 2 3 4 5 7 8 9 0
305F B'—

Eigure de. Same ag 2a, except that the expected value of the
prior B' corresponds to F = 3 i.e., seeding multiplies
the rainfall by 3.
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30k B’ PROBABILITY -
“ PRIOR B' ——— FLAT GAMMA FCN
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Figure 3a. Same as figure 2 except that Ky = &, giving a
flatter prior probability distribution of B'.
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Figure 3b. Same as figure 2 except that K1 = 2, giving a
flatter prior probability distribution of B'.
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Figure 3c. Same as figure 2 except that Ky = 2, giving a
flatter prior probability distribution of B'.
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Table 4. Transformed Single Cloud Data.

Prior B‘FT;t szma Function Posterior B'Gaussian
Prior <B'> F Post <B'> F F for 95% Prob.
2.83769 0.5 1.81176 3.07 1.65 - 5.4
2.38620 1 1.80950 3.08 1.65 - 5.65
2.0065 2 1.80657 3.08 1.65 - 5.65
1.81312 3 1.80468 3.08 1.65 - 5.65
1.59575 5 1.80203 3.08 1.65 - 5.65
1.34348 10 1.79788 3.10 1.73 - 5.80

As might be expected, when the prior B'distribution is more
peaked (K; = 12) the posterior <B'>is fairly sensitive to the prior
<B'>, but when the prior B'distribution is flatter, there is virtually
no sensitivity to the prior scale parameter and the seeding factor is
almost identical to that obtained from classical statistics. Al-
though the 95 percent probability permits a rather wide range in seeding
factor, it is substantially positive at even the lowest limit. These
results are further confirmed when we take the most diffuse prior
distribution of R, namely uniform.

The most diffuse prior probability to place on B'is one
which is uniform over a wide range. We start with Bayes. equation in
form (4) where again the denominator is regarded as a normalizing con-

stant. We obtain:




al (n R')u‘_l BER
P(.BllD'l) = P(DllBl) P(B') = [F(Oi’)]n It °

Denom, Denom. (16)

and

KB e a<B'<b

p(g1D) =

otherwise (17) |

I
P e g

where the range a to b is the range defined for the uniform prior

probability of B'.

Hence
b n
~g' L Ry
nOt.l E:l .
1 23 e dgt
a

n
y = BLR. (19)
i=1
and we find
" . (20)
1
vl lno&'+ - yina'+ 1, b X R‘i) ~y{nad'+ 1, a B R'i)
2 R'i) i=1 i=1
i=1
n
where Y is the incomplete gamma function. It is noteworthy that I R

i=1
is a sufficient statistic for the distribution.

We want the moments of the posterior probability distribution




of B'. Firstly,

b -B'}E R
. |
<B||D|>= K[8|HQ'+ 1 e =1 dB'
a
bZWT
_ K not + 1
n N + 2 y e dy
I R, .
i=) aERi
K
= — 5 y{no' + 2, bER'i) - y{no'+ 2, aZR})
5 R,
(i=1 ‘) (21)
multiplying (21) by K from (20) we get
<B'p'>= 1 v(na'+ 2, bER{) - y{(no'+ 2, alR})
n y(na' + 1, bERi) - y(na'+ 1, aZR}) (22)
L R}
i=1
or for the mth moment of the distribution
<B'm[D'>= 1 v (notm+1, bER}) - v {nottm+1, aZR:)
n m y{nd + 1, bZR;) - v(na' + 1, aZR}) (23)
Z R}
i=1

We have developed computer programs which compute the posterior expected
values of B and its moments. They also compute and plot the posterior
probability density distribution for B: including the normalizing factor.”
This function is a truncated gamma distribution, as will be illustrated.
Applying the analysis to the transformed single cloud data, we

obtain the results shown in figure 4. In figure La, with the prior

*Available on request from EML.
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Figure 4. Probability distributions of B' when the prior probability
distribution (dashed) is assumed to be uniform. a. Prior
probability of B' extends from values corresponding to F = 0.5
to values corresponding to F = 10. b. Prior probability of B’

extends from values corresponding to F = 0.8 to values corres-
ponding to F = 5.0.
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Pigure 4e. Prior probability distribution of seeding factor F
corresponding to figure 4a.
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Figure 4d. Prior probobility distribution of seeding factor F
corresponding to figure 4b.
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range of uniform B' corresponding to a seeding factor in the range 0.5
to 10, we’see a very sharp peak in the posterior B' probability dis-
tribution, corresponding to a posterior expected seeding factor of 3.07.
Furthermore, there is virtually no probability that the seeding factor
lies below 1.2 or above 8. Reducing the range of the uniform prior ' to
an F in the range of 0.8 to 5 (fig. Lb) we find only a small reduction
on the posterior expected F, and negligible probability that F is less
that 1.2. Figure 4c and 4d show the prior distribution of F correspond-
ing to the two cases of uniform prior on B' that we have treated. Note
that neither one is a very favorable prior for F.

The agreement of these results with our earlier cnes, together
with the somewhat greater information gained from the Bayesian approach,
are encouraging. However, the question must be addressed as to whether
using the fourth root transformation might have lost any information
and/or introduced any bias. The results of the bias test are shown in
table 5 and figure 5.

Table 5. Bias Test on Fourth Root Transformation.

EML Single Cloud Control Data

X R T T T*H/T* (x=1.0)
0.2 32.92 1.96177 Th,.81127 0.2108%
0.5 82.29 2. 466797 37.02829 0.52710
0.6 98.75 2.58183 L4k 43350 0.63252
0.8 131.67 2.77436 59. 24494 0.84336
1.0 164.59 2.89507 70.24837 1
1.1 181.05 3.00427 81.46214 1.15963
1.2 197.51 3.07034 88.86809 1.26505
1.5 246.88 3.24649 111.08522 1.58132
2.0 329.18 3.48858 148.11353 2.10843
2.5 411.47 3.68872 185.14107 2.63562
3.0 493.76 3.86075 222.17067 3.16264
3.5 576.06 4,01243 259.19694 3.68972
4.0 658.35 L. 14864 296.22588 L.21684
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Figure 5. Results of bias test on fourth root data transformation — EML single cloud rainfall data.
(left) Untransformed rainfall R in acre-feet plotted against the transform T. (right) Untrans-
formed rainfall R in acre-feet plotted against T%. Note near-linearity.



The bias test consisted of multiplying every cloud rainfall by the
factor x and then averaging the 26 cases, presented in the column headed
R. Then the fourth root of each data bit times x was taken and the aver-
age of this set presented in the column under T. Then each entry in the
T column was raised to the fourth power. The last column presents the
ratio of each T* to the value of T when x = 1. This column tells us,
for example, that if seeding increased the rainfall from each cloud by a
factor of 3, and if we used transformed data to deduce the seeding factor
(without a careful inverse transformation) we would deduce a seeding
factor of 3.16 or a little over five percent too high. Figure 5 shows
that with these data the transformation s very nearly linear in the
important range of the data and only introduces a small positive bias.
Nevertheless, it is desirable to work with raw data if and when possible
and this is done next.

L, USE OF THE METHOD WITH THE SINGLE CLOUD RAW DATA

Figure 6 compares the histograms for the raw data with those
for the transformed. With the high rainfall tails, it
was not at first recognized that the gamma distribution might also be
applied to the raw data. Extensive meteorological literature has shown
that when enough cases are available, the gamma distribution fits a large
class of rainfall data (see Thom 1947, 1951, 1957, 1958, 1968; Thom and
Vestal, 1968; Mooley and Crutcher, 1968; Mooley, 1972; Barger, Shaw and
Dale, 1959 and the bibliographies in these publications). Hence we -
applied the program DAMAX to the raw single cloud data to obtain the

parameters for the best Tit gamma distributions and to compare the fits
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normal distributions.
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Figure 6e. Transformed (fourth root) control data versus best-fit
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Figure 6g. Transformed (fourth root) seeded data versus best-fit
inverse gamma and Rayleigh distributions.
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with the %2 calculation>. Table 6 presents results for both raw and

transformed data.

Table 6.
Fitting of Distribution Functions to EML Single Cloud Data
Distribution Equation for p(R)

1. Normal Family A Exp (BR-CR?)

2. Log-Normal A RB Exp[-c(10gR)?]

3. Weibull A RB Exp(-CRB*1)

L, Gamma A Rg Exp (-CR)

5. Rayleigh A Rg Exp (-CR?)

6. Inverse Gamma A RB Exp(-C/R)

7. Inverse Rayleigh A R” Exp(-C/R?}

Part |
Control Clouds - Transformed Data
D.F. = 6
Dist. -Log(A) B c Rel. Prob. x2

1 4.04157 2.02874 0.34878 0.06 6.6
2 3.08051 5.15808 3.08644 0.26 2.3
3 2.34166 1.80100 0.03433 0.09 6.6
b 0.49114 5.52299 2.22360 0.27 4.2
5 2.31008 2.58780 0.18001 0.17 4.9
6 -11.77235 ~7.16194 15.37373 0.12 2.5
7 -4,22864 -h.21716 8.40302 0.03 6.0

5 Here the X2's have been obtained from the { test (see Tribus, 1969,
loc. cit., p. 101) to which the X* test is an approximation. For the

transformed data slight changes in X® compared to those published earlier

(Simpson, 1972) are the result of some minor improvements in the program.
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In the case of the gamma distributions, the method of maximum
likelihood was also applied to obtain the parameters, with ‘results identi-
cal to those presented in table 6. The methods of maximum likelihood and
maximum entropy result in the same set of equations to solve when esti-
mating the parameters of the gamma distributions. The concepts of maximum
entropy and maximum likelihood are, however, quite different, as explained
in Tribus {(loc.cit., 1969). The method of Thom's estimators (Shenton and
Bowman, 1970) gave identical results with the transformed data and para-
meters less than two percent higher than those of table 6 with the raw

data, where the shape parameter is less than one.

The x*'s for most cases for most functions are sufficiently low
that the null hypothesis cannot be rejected. The gamma distribution
appears to fit the transformed data best and perhaps to be a relatively
less good fit for the raw seeded data. However, the Monte Carlo experi-
ments in section 6 will show that this conclusion is unwarranted. There
we demonstrate that with a sample of this size, it is quite possible that
the gamma distribution is the best or nearly perfect fit to the raw data,®
or anyway no existing evidence militates against our so using it.

Leaving the important questions concerning the determination of
distribution functions from small samples to the final section, we pro-
ceed next to evaluate the seeding effect from the raw rainfall data.

To apply the same analysis used with the transformed data, with

the scale parameter B a measure of the seeding effect, it is necessary to

& We recognize, of course, that if either the raw or the transformed
data were perfectly fitted by a gamma distribution, then the other set

could be fitted only approximately by that same distribution function.
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assume that o, the shape parameter, does not vary between seeded and
control populations. With this sample o varies by a little over one

percent between seeded and control populations, while B varies by a fac-

I

tor of 2.35. We therefore assume that o = 0.6 for both populations. A

L
careful analysis of the consequences of this assumption showed no detect-
able change Tn probability for rainfall amounts exceeding ten acre-ft,
For rainfall amounts less than ten acre-ft the probability curves for
seeded and unseeded rainfalls are brought slightly cioser together by the
assumption that o is the same for both; hence this assumption will, if
anything, cause us to underestimate the seeding effect.

We next construct the table re]ating. F and B, assuming that R

for F =1 is 164.5885 acre-ft, the sample average. Results are presented

in table 7.

Pable 7. Relation Between Seeding Factor F and B, the Gamma
Distribution's Scale Parameter.

F Single Cloud Raw Data 8
o= 0.6

W

.01456
.00728
.00458
.00364
.00243
.00182
.00121
.00091
.00072
.00060
.00052
.00040
.00036

Ut ooV N

O W~ VI W —— 000

—

Table 7 is illustrated graphically in figure 7. There is now
a simple inverse relationship between B and F.

As before, we first estimate the seeding factor with the prior B
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Figure 7. Graph showing relavion between B the gamma function scale
parameter, and seeding factor F for the single cloud raw data.
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a gamma distribution. When n is large, the limiting value of B is
.001866, corresponding to an F of 1.96, which is somewhat less than

three. Tables 8 and 9 show results corresponding to tables 3 and 4.

Table 8. Raw Single Cloud Data.

Prior B Peaked Gamma Function Postertior B Gaussian
K] = ]2
Prior <g> F Post <B> F F for 95% Probability

.00728 0.5 .002100 1.80 1.34 - 2.8

.00364 1 .001866 1.96 1.52 - 3.2

.00182 2 .001562 2.35 1.8 - 3.9

00121 3 .001289 2.85 2.08 - 4.6

.00072 5 .0009802 3.83 2.7 - 5.78

Table 9. Raw Single Cloud Data.

Prior § Flat Gamma Function Posterior B Gaussian
Ki = 2
Prior <B8> F Post <B> F F for 95% Probability

.00728 0.5 .00150 2.4 1.72 - 4.7

.00364 i 00146 2.5 1.75 - 4.9

.00182 2 .00140 2.6 1.83 - 4,95

00121 3 .001339 2.7 1.85 - 5.1

.00072 5 .001233 2.9 2.0 - 5.5

As with the transformed data, the flat prior B gives results less
sensitive to the prior than does the more peaked curve. Both sets of
results, however, give lower seeding factors which are more sensitive
to choice of the prior expected value of B. The range for 95 percent
is somewhat reduced, however, particularly for the more peaked prior dis-
tribution. Figures 8 and 9 illustrate these results. From them, together
with figure 7, it is clear that the unfavorable ptior distribution is

responsible for the lower seeding factor in these cases compared to nearly
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(solid) probability distribution of the gamma scale parameter
B, when prior B is a gamma distribution with K, = 12. a. Ko
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F = 0.5.
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Figure 8c. K, in prior adjusted so that prior expected B
corresponds to F = 3.0.
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(solid) probability distribution of the gomma scale param-
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a. Ky in prior adjusted so that prior expected B corres-
ponds to F = 0.5.
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Figure 9b. K, in prior adjusted so that prior expected P
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all the other methods of its assessment.

We then proceed next to the improved approach, namely a uniform
distribution of B over a very wide range of seeding factors. Results
are shown in figure 10. With the F range 0.5 to 10 (fig. 10a) we get a
very sharp peak in the posterior probability distribution for B, corre=
sponding to an F of 2.5. There is negligible probability that F is
less than 1.39. Restricting the prior B range to F from 0.8 to 5
(fig. 10b) does not change the peak value of posterior F. With this
prior there is negligible probabillty that F is less than 1.5. Figures
10¢ and 10d show the prior probability distributions of F corresponding
to the chosen uniform priorsof B. These are even more unfavorable than
those for the corresponding cases with the transformed data (cf. figs.
e and 4d). Clearly, the slight reduction on posterior seeding factor
that we obtain with the raw data is mainly a result of the less favorable
priors, although the data transformation and the assumption of @ = 0.6
for both seeded and control populations may have contributed slightly.
Despites these differences, the data so strongly dominate the posterior
distribution of F that it comes out with remarkable consistency in all
cases considered so far.

5. ANALYSIS DIRECTLY IN TERMS OF SEEDING FACTOR
5.1 Seeding Factor with Raw Rainfall Data

The optimal approach to seeding factor evaluation is to treat the
probability distributions of the seeding factor itself. This method,
of course, involves setting the prior probability distribution on seed-
ing factor, for which most people would have a greater intuitive prefer-
ence than for using fts reciprocal or a function of its reciprocal; most

important, this procedure permits a diffuse prior probability on the
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Figure 10. Raw single cloud data - uniform prior (dashed) proba-
bility of B. Posterior probability solid. a. Uniform
prior in range corresponding to F from 0.5 to 10. b.
Uniform prior in range corresponding to F from 0.8 to 5.
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seeding factor itself, namely uniform over a wide range.
Therefore, in this treatment we will eliminate B altogether from

the rainfall probability density distribution and write instead

<R> F <R> F
- NS
p(R) = ~ N5/ qa~1 (24)
T'(a)
where R is now rainfall in acre-ft; <R> yg is the sample average or ex-

pected value of the unseeded distribution. F is the seeding factor,

defined just as before, namely

<R> = <R>yg F (25)

and

Again, we will beain with a prior probability assignment to F
which permits an analytic solution, namely an inverse gamma function as

follows:

K.,+1 _, _. _ :
p(F) = %%ﬁl;%y e K /R (27)
1

The first two moments of the inverse gamma distribution are

and (28)

V2(F) =-R—%;
1

To find the posterior probability distribution for seeding effect

F, we apply Baves equation and proceed as follows:

ll'] T Caen ‘--‘.,)lﬁ




p(F|D) = ¢ p(F) p(D}|F)

(29}
n
o Z Ri
i _ K -2 -K /F _-no i=1
CF 2 F exp Roys F
n
o I Ri
-noi~-K_ -2 21 i=1
CF 1 exp K2 ~RS (30)

where with the single clouds <R>yc = 164.588 acre-ft, the average

of the 1968-1970 sample. This time we find the normalizing constant C by
setting up the integration and transforming toy = 1/F. The resulting

integral is recognized as that of a gamma, so that the constant is

known to be

C=K2+:‘<—F§—>F§-

(}:ZRi )nOL + Kl + 1
Flna + K+ 1)

Now
n
o Ri
<F|D> = K, + —JZL ) (31)
<R>\s
K1 + no
and
2 = 1 2
V2 (F|D) R (32)

It is noteworthy and logical that when n = 0 (i.e. there are no

data) that in (31) <F|D> reduces to K,/K;. When n becomes very large,

the expected value of the seeding factor approaches Eg/ﬁﬁs as its coef-
ficient of variation shrinks.

S k2




We now consider seeding factor probabilities using the single cloud

raw data, (30) - (32) and combinations of K, and K, as listed in table 10;

note that K; must exceed zero for finite prior expectation and that it
must exceed one for finite prior variance.

Table 10. Seeding Factor - Raw Data - Prior Inverse Gamma Function.
Values of K1, Ka; Prior Expectations and Standard Deviations.

Prior Prior
Case No. EL EL F o]
1 2.25 6.75 3 2.68
2 1 3 3 oo
3 1 1 1 0
4 1 0.5 0.5 e
5 i0 20 2 0.667
6 10 5 - 0.5 0.167
7 0.5 0.5 i not defined

Table 11 gives the seeding factor expectation, standard deviation
and + 20 range after seeing the seeded single cloud data. As illustrated
by the near symmetry of the solid curves of probability density for
seeding factor, the + 20 range is a fair approximation to the integrated

95 percent probability range.

Table 11. Seeding Factor - Raw Data - Posterior Probabilities
With Prior Invergse Gamma Function.

Case No. <F> o + 20 range
1 2.72 0.64 1.37 - 3.93
2 2.70 0.66 1.34 - 4.01
3 2.58 0.63 1.31 - 3.85
k 2.55 0.63 1.30 - 3.80
5 2.42 0.48 1.46 - 3.37
6 1.83 0.36 1.11 - 2.55
7 2.63 0.66 1.32 - 3.94

The seven cases are illustrated graphically in figures 11 and 12.

Cases 4 and 6 show what happens even with a prior prejudice against the
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seeding which is so extreme that virtually no probability favoring even
a positive effect is permitted (fig. 12a and particularly fig. 12c).
Even with this prejudice, the data overcome it and all but two of the
posterior probabilities exceed 2.5. With an extremely small exception
in case 5, negligible posterior probability of a negative seeding effect
remains after taking the data the data into acéoun;. However, it is
still better to take a more di ffuse prior probability distribution for
the seeding factor.

The final effort for the raw data is to take a uniform prior

probability, namely

P(F) = E'EE for a < F < b (33)

so that the posterior probability density distribution for seeding

factor F is

p(F[D)} = ¢, p(D{F) for a < F <b

=0 elsewhere
n
o Ri
_ -no _ j=1
=C, F exp -----—----——<R>N 5 for a < F <b
S
=0 . elsewhere (34)

The normalizing constant C; may either be found by adapting the
computer program described, setting the integral from a to b equal to

one, or analytically as follows:

LY




0.7 T I ] T I T T T i
CASE [
06k SEEDING FACTOR i
. SINGLE CLOUDS —RAW DATA
~———=  PRIOR PROBABILITY
> 0.5+ PRIOR <F>» = 3 -
= ——  PROBABILITY
7] AFTER DATA
504 . POSTERIOR <F|D> = 2727
() I \
\
a03F [ [\ -
@) \
il / \
Qo2 / -
{
o.1 - I’ _
! . ——
[ | I P T T |
0 { 2 3 q 5 © T 8 g 10

F —

Figure 11. Dirvect seeding factor analysis - raw single cloud
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inverse gamma function. Posgterior probability on seeding
factor solid. a. Case 1. Prior expected F = 3.
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Figure 11b. Case 2. Prior expected F = 3.
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n noe-1 n n
o = R, o I R; o ¥ R
C =1 | v{na-1 = -v{na-1 —f=t
1 <Rys> ’ <Rys> a * “<Rys> b (35)
n
a I R;
L =1
To simplify, let u = Ry then
C, = u”“'t//{;(na-l,u/a) - v(na-1,u/b)]
<f> = 1 Y(no-2,1/a) - y(na-2,1/b)
s Y(na'l ,H/a) - Y(n(x-1 1u/b) (36)
<p2> = 2 X(n0=3,u/a) ~y(na-s, u/b)

y{no-1,u/a) -y(na-1, u/b)
Here v is the incomplete gamma function as before.’

Two ranges of uniform prior probability on seeding factor were
considered, namely a reasonable range from F = 0.8 to 5 and an extreme

range from F = 0.5 to 10. ResulJts are shown in table 12 and figure 13a and b.

Table 12. Single Clouds - Raw Data. Uniform Prior Probability
on Seeding Factor.

Case 1 - Reasonable Range Case 2 - Extreme Range
0.8 -5 0.5 - 10
After data: After data:
<F[D> = 2.99 <F|D> = 3.08
o{F|D) = 0.72 o{F|D) = 0.87

7 When using the normalized incomplete gamma function it is necessary to’

multiply <F> by 1/(no-2) and <F2> by 1/[{no-2) (na~3)].
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Figure 13. Direect seeding factor analysis - raw single cloud data.
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probability on seeding factor (solid). a. Reasonable range on
prior; F from 0.8 to 5.
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Figure 13b. Extreme range on prior; F from 0.5 to 10.
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Figure 13c. Prior probability distribution of gamma function
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Figure 13d. Prior probability distribution of gamma function
scale parameter B, corresponding to figure 13b.
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Again, the most likely seeding factor from the data is about three.
There is practically no probability that the seeding factor is less than
one, or namely a negative effect. There is a small, but finite probability,
that it exceeds five. Figures 13 b and 13c show the prior probability
distributionsof the gamma scale parameter B implied by the uniform prior
probability of F in figures 13a and 13b. 1t is important to note that a
diffuse prior on seeding factor is anything but diffuse for B and vice-
versa. |t would, therefore, seem preferable in the future to assign
priors to ¥, wherever possible, rather than to functions of F for which

there is less physical meaning.

5.2 Seeding Factor with the Transformed Kainfall Data
1t appears desirable also to conduct a direct seeding factor
analysis with the transformed data, since the distribution of these are
nicer looking gamma functions with larger shape parameters. These more
normal distributions might possess advantages for some types of investi-
gation.
Here we define a transformed seeding factor F'

<R'>
F!' = e Seeded ~ FU-25 (37)

<R'> control

for use with the transformed data. (See section 3 for a discussion of
the above approximation.) We consider only uniform prior probability

on F'. Analogously with (24}, (33) and (34) we proceed as follows:
p(F') = —_b'ia' for a' < F' < b (38)

so that the posterior probability density distribution for F' is
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p(F'IIDI)

=90 elsewhere
n
o R':
= C'F'(_nuo exp |- L
<R'>yg F!
=0 elsewhere

where R' now stands for transformed or fourth

CI p(DIIFI) .]':Dr. aI iFI ibl

for a' < F' < b'

(39)

root data and o' is seven.

We consider the two cases where F' is uniform in two ranges: first

corresponding to F from 0.5 to 10 and second

previously.

55

to F from 0.8 to 5, as




The inverse transformations are

P(F) = 15t (40)
and
j
n .
G B R |
p(F|D) =q F Y oeXp | LTS (41) |

The prior expectation for F is readily obtained by integration,
while the posterior expectation can readily be shown (by transformation
of the appropriate integral) to be

<F|Dp'> = <F'*|D'>

n
a' X R'i
i=1 y(no~s,pu/a) - y(nd-5 p/b)
<R'™>ns [/ yv(no-1,u7a) = v (nd=1,176) (42)

or the fourth moment of the F' distribution.’

The results of this approach are illustrated graphically in figure
14. The slightly higher values of posterior expected seeding factors
here than previously are attributed in part to the positive effect of the
transform (fig. 5 and table 5) and in part to the difference influence of

the prior probability.

8 When normalized incomplete gamma functions are used in (42), the fesult

must be multiplied by 1/[na'-2) (nha'-3) (no'-s) {(na'-s).
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Figure 14. Direct seeding factor analysis. Transformed single
cloud data. Prior probability on F' (fourth root of F) is

uniform (dashed).

Posterior probability on F is solid. a.

F in range 0.5 to 10.
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Figure 14b. F in range 0.8 to 3.
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6. ON THE NUMBER OF OBSERVATIONS REQUIRED

An irremovable obstacle in most weather modification experiments
is the small size of the data sample. In the 1968 EML single cloud ex-
periment, 19 GO cases (14 seeded and five control) were not enough to
separate the seeded and control popuiations to the five percent level
by classical statistics, while increasing the sample to 52 G0 cases
in 1970 accomplished this goal. In approaching any experiment, we must
inquire how many cases will be necessary to resolve various postulated
magnitudes of seeding effect to specified degrees of significance and/or
accuracy.

The demonstration that the rainfall observations are well fitted
by gamma distributions provides a strong tool to attack this important
problem. It is not difficult to generate on a computer any number of
randomly chosen '"rainfall' observations from any gamma distribution.
This is cheaper than an observational program and much cheaper and
less complicated than any actual modification program. We may then use
simulated rainfall observations to address questions like the following:

1) How many observations are required to obtain the sample
average of a rainfall population to a specified accuracy?

2) How many cases are needed to determine the shape and scale
parameters of the distribution adequately? What is an ade-
quate determination of these parameters for the particular
experiments we are conducting?

3} What are the relative advantages and disadvantages in working

with the raw or transformed data regarding the sampling

58




problem and distribution stability?

4) What are the magnitudes of errors in seeding factor that can
arise from the data sampling problem and how many cases are
required to ensure these do not exceed a specified level
of acceptability?

Some aspects of these questions are answered in this section for
the single cloud case, and a framework is established for their further
pursuit, particularly in the area experiment.

The computer program used here, together with DAMAX, is
called RAIN (listed in Appendix I). In the first part, it calculates In-
tegrated probability as function of BR, for any gamma function, given o.
In the second part, it generates random numbers from 0 to 1 and interpol-

ates in the integrated probability table, printing out R when B is given.

The simplest illustration involves sample averages. We take
gamma distributions corresponding to the control rainfall populations,
raw and transformed. Then we consider m samples of n observations, in
crder to assess our chances of determining the expected value <R> of
the ""real"! gamma distribution within specified limits from a set of n
observations. |In preparing table 13, we started with m = 100. With
parameters corresponding to the raw data, results were clearly not re-
producible from one batch of 100 sample averages to the next. I|n order
to obtain reproducible results, m was increased until this goal was
achieved, namely to m = 1000. Appendix !l shows from probability theory

that results nearly identical to those of table 13 are obtained with the
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sample sizes agiven.

Table 13. Percent Probability That The Sample Mean of n Cases
Lies Within Specified Limits of <R> - from Numerical Experiments.

A. Raw Data (m = 1000)
n <5% <10% <20% >30% <1/2 >2
5 6.0 12.4 25.0 61.9 20.1 6.0
10 9.8 19.5 37.7 45.9 7.1 2.1
20 13.9 28.6 51.2 28. 1 1.8 0
50 20.5 39.1 72.3 7.4 0 0
B. Transformed (m = 1000)
n <5% <10% <20% >30%
5 21.3 45.0 78.1 5.6
10 33,1 55.2 90.2 1.0
20 43.6 76.6 98.5 0
50 68.0 94.0 100 0

With the raw data, note that doubling the sample size leads to roughly
a 50 percent increase in the percentage of cases falling within the 5,
10 and 20 percent categories. With a sample of ten cases, there is still
a serious possibility of getting a sample average in error by‘a factor of
two, which virtually disappears when we obtain 20 cases.

In considering the transformed data; there is little, if any, indica-
tion of reproducibility occurring sooner than with the raw data. With
the transformed data, it should be recalled that 5 percent error corre-
sponds to roughly 20 percent error in the raw data and hence from this
viewpoint there appears to be no advantage in working with transformed
data.

An important further test with this program is to simulate a
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"seeding'' experiment analogous to the manner of Huff (1971) in which one-
half of the randomly generated sample averages from the same population9
are arbitrarily called "'seeded.'" The ratic of each term in two matrices
containing 100 ''seeded' and 100 "control' samples was taken and results
are shown in table 14. This table presents the frequency of various
ratios of the ''seeded' sample average to the "'control' sample average.

This kind of spurious result could arise from an attempted modification

experiment where the treatment had no effect.

Table 14. Simulated "Seeding! Experiment - 100 Samples of n Cases
each. "Seeded" to '"Comtrol" Ratio.

Frequency Distribution of Ratios

n= 5 10 20 . 50

min. L0558 0.26 0.24 .56
< 0.50 17 7 8 0
0.51 - 0.80 24 27 19 21
0.81 - 1.20 22 23 40 53
1.21 - 1.50 7 15 16 21
1.51 - 2.0 7 11 12 5
2.01 - 2.50 10 4 3 0
2.51 - 3.0 D 10 2 0
> 3.01 13 3 0 0

max. 10.70 4,06 2.71 1.81

Table 14 suggests extreme caution in drawing inferences from seeding
experiments with small samples of data. It also suggests that to specify
natural distributions adequately for resolution of seeding effects of a
factor of two to three, 20 to 50 cases are a necessary minimum. If we come
down to dealing with expected seeding fTactors of 50 percent or less, it is
plain that 50 cases are not adequate, with this type of data distribution.

The final important question here is the degree of accuracy

3 That is, all cases are taken from the same ''real' gamma distribution.
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with which the gamma function parameters can be recaptured as a function

of n, the number of observations. Here we consider two gamma functions,

with shape and scale parameters chosen to correspond to the control :
single c¢loud data, raw and transformed, respectively. We select n observ-

ations at random from these distributions, pretend the set is a set of A
rainfall data for n clouds and apply DAMAX. We repeat this procedure m
times for each value of n and then examine the statistics of the recovered
parameters and their departures from the "'real'' parameters. In tables

15 and 16 to follow we take n = 20, 50 and 100 successively; the reason

for the choice is that these are the numbers of control cases we might
expect to obtain in single or multiple cumulus experiments in}two to ten
yvears of work.

Here we take m = 100 {100 sets of five, 20 and 50 cases).!? Expert
opinions consulted suggest that m = 100 may be marginal for reproducibility,
but in analyzing the lTatter we are aided by the extensive valuable work
of Bowman and Shenton (1968; 1970) on the gamma distribution. They derived
asymptotic expansions of the expectations, presenting tables of bias,
standard deviations, etc. of the parameters as a function of the parameters
and of sample size. They also conducted Monte Carlo experiments with up
to 10° cases each.

Table 15 presents results for the gamma function corresponding to-
raw single cloud data, while table 16 corresponds to the transformed single

cloud data.

10 The limit to the sample at this point is imposed by the cost of

computer time.
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Table 15. Application of DAMAX to "Data' Generated by Random
Selection from Specified Gamma Functions.

Gamma function corresponding to raw controi data

o= 0.6 B = 0.00364 <R> = 164,5885 acre~ft
A. n =20 _
o 8 x 102 Prob. Gamma R (acre=-ft)
Max. value 1.1092 1.1870 0.4888 327.1277
Min. value 0.3844 0.1730 0.0441 73.9079
Mean 0.6677 0.4769 0.2689 154 . 4864
Variance 0.0275 0.0392 0.0058 2384.9482
Std. dev. 0.1658 0.1979 0.0762 48.8359
B. n=50
Max. value 0.9947 0.6910 0.6408 265.3409
Min. value 0.3959 0.2120 0.103% 91.8385
Mean 0.6137 0.3779 0.3679 168.6239
Variance 0.012k4 0.0116 0.0121 380.1806
Std. Dev. 0.1115 D.1075 0.1102 29.6678
C. n=100
Max. value 0.8516 0.5620 0.8166 218.2472
Min. value 0.4659 0.2500 0.0762 118.1907
Mean 0.6026 0.3672 0.4596 167.2139
Variance 0.0055 0.0052 0.0334 4g8.9574
Std. Dev. 0.0743 0.0722 0.1827 22.337h
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Table 16. Application of DAMAX to "Data” Generated by Random
Selection from Specified Gamma Functions.

Gamma function corresponding to transformed control data .
o= 7.0 B = 2.22360 <R> = 2.93353 (acre-ft)°"?°
A. n =20 _
o 4] Prob. Gamma R {acre-ft)0:25 "
Max. value 29.6933 9.9008 0.2449 3.4520 i
Min. value 2.7792 1.0132 0.0133 2.2276 .
Mean 8.1524 2.8038 0.1684 2.9308 :
Variance 12.3k459 1.5181 0.0024 0.0468 ﬁ
Std. dev. 3.5137 1.2321 0.0492 0.2164 {
B. n = 50 E
Max. value 12.3816 k. 1242 0.5065 .1160
Min. value L ohg3h 1.4470 0.0306 2.4727
Mean 7.2542 2.4750 0.2596 2.9503
Variance 2.3753 0.2552 0.0122 0.0459
Std. dev. 1.5412 0.5052 0.1103 0.2143
C. n= 100
Max. value 10.6011 3.5235 0.7152 3.2217
Min. value £.2579 1.7100 0.0072 2.6773
Mean 7.3754 2.5223 0.3972 2.9302
Variance 1.1397 0.1492 0.0298 0.0113
Std. dev. 1.0676 0.3863 0.1726 0.1064

It is noteworthy that, despite the fact that all observation sets

“real'' gamma distributions, the gamma distribution did

were selected from
not always come ocut the most probable, with the maximum entropy criterion.

lts rank is tabulated in table 17.
Table 17. Rank of Gamma Distribution.

A. Raw Data B. Transformed Data
n/rank 1 2 3 4 5 1 2 3 L5
20 4 65 14 5 2 17 17 18 48 0
50 k1 54 5 0 0 3 30 12 24 0
100 58 4 0 0 O 54 26 i 5 0 i

6l




Next we examine the bias of the mean and the variance that we
might expect from a much Targer number of calculations. Table 18 is

reproduced from the figures of Bowman and Shenton {1970).

Table 18. (After Bowman and Shewnton, 1970). Properties of
Recaptured Gamma Parameters as Function of Sample Size.

Mean Bias Fractional Variance
) 1/8 o 1/8
A. o= 0.6 {(corresponding to raw single cloud data)
28 0.1311 -0.0425 0.1204 - 0.1503
50 0.0477 -0.0169 0.0344 0.0610
100 0.0231 -0.0084 0.0155 0.0306

B. o= 7 (corresponding to transformed single cloud data)

n

20 0.1710 -0.0499 0.1757 0.0977
50 0.0619 -0.0200 0.0480 0.0403
100 0.0300 -0.0100 0.0213 0.0203

Our small samples in tables 15 and 16 were extensively compared
with the results in table 18. There is fair agreement in bias, improving
as n increases, and excellent agreement in variance. In no cases was our
bias significantly or systematically larger than the above. These results
increase our confidence in our RAIN program and random number generator,
which was subjected to numerous independent tests. In all but the vari-
ance of the scale parameter, the advantage is with the smaller shape

parameter; hence table 18 provides no reason for preference to work with
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transformed rather than raw data.

It appears from tables 15 - 18 that essential improvement in para-
meter recovery is secured by progressing from 20 to 50 cases, but less
is gained in doubling that sample from 50 to 100. However, further
consideration of the variances and standard deviations presented versus
anticipated seeding factors presses the argument for 100 cases.

I1f a seeding factor is two or more, it is likely that about 50
pairs of cases can resolve it adequately. If we deal with seeding factors
of much less than 2, then we must attempt to obtain roughly 100 cases.
Furthermore, with seeding fTactors less than about 2, radar calibration
errors and/or gaging problems, not considered in this paper, become a
serious consideration.

7. CONCLUDING REMARKS

The Bayesian approach appiied to the single cumulus experiments
confirms a seeding factor of about 3 on the rainfall. This result can
be shown relatively independent of widely differing prior probability
assumptions.

The approach leads to valuable numerical experiments on the number
of cases needed to resolve var}ous sizes -of seeding effects. The entire
framework will next be applied to the multiple ¢ ulus experiments of

1970, 1971 and 1972.
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APPENDIX |
LISTING OF PROGRAM RAIN

DIMENSION P(100),R(1000) ,RV{1000)
DIMENS ION PAK(6) ,BUFF(14) ,ELTNM(2)
INTEGER DATE(2)
ABNORMAL USRRND
DATA PAK/'RANDOM','RAWDAT',' e Pt
200 READ (5,16} E1,N1,A,Q,B,N,M
16 FORMAT (A6,16,2F5.1,F8.5,214)
IF (N.EQ.0) CALL EXIT
DO 300 KL=1,100
N1=NT+]
ENCODE (12,15,ELTNM, I1X)ET,NI
15 FORMAT (A6,J6)
PAK(3)=ELTNM(1)
PAK(4)=ELTNM(2)
RVSUM=0,
CALL ERTRAN (9,DATE(1),DATE(2))
DECODE (12,10,DATE,IX} 1A,IB
10 FORMAT (216)
IP=(1A+I1B)/615+I8
S=USRRND (IP)
DO 20 I=1,50
Y=A%*1/50
P{1}=FNI(A,Y)
20 CONTINUE
DO 25 1=51,100
Y=A+(Q-A)*(1-50) /50
P(1)=FNI(A,Y)
25 CONTINUE
Do 60 K=1,M
RSUM=0.
DO 50 J=1,N
S=USRRND (0)
DO 30 [=1,100
IF (S.LT.P(1)) GO TO 35
30 CONTINUE
35 IF {I.GT.50) GO TO 40
IF (1.EQ.1) GO TO 45
R{J)=A%(1-1)/50+(A/50)*(S-P(1-=1))/(P(1)-P(1-1)})
X0=A*(1-1)/50
X1=A*1/50
PX0=P(1-1)
PX1=P{I)
GO TO 48
4o RR=A+(Q-A)*(1-51)/50
R{J)=(RR+((Q-A)/50)*(S-P(1-1))/(P(1)-P(1~1}))
X0=A+{(Q-A)*(1-51)/50)



LISTING OF PROGRAM RAIN (Continued)

X1=X0+((Q-A)/50)
PXO=P(1-1)
PX1=P(I)
GO TO 48

45 R(J)=A/50%S/P (1)
X0=0.0
X1=A/50
PX0=0.0
PX1+P (1)

48 X=R{J)

99 PX=FNI (A,X)
IF ((ABS{PX-S)).LE.1E-4)GO TO 101
IF (PX-5) 100,101,102

100 X0=X
PX0=PX
X=X0+((5-PX0) / (PX1-PX0) } * (X1-X0)
GO TO 99

102 X1=X
PX1=PX
X=X0+(($-PX0) / (PX1-PX0))/ (X1-X0)}
GO TO 99

101 R{J)=X/B
RSUM=RSUM+R (J)

50 CONTINUE
RV (K)=RSUM/N
RV SUM=RVSUM+RV (K)

60 CONTINUE
AVE=RVSUM/M
WRITE (6,55) (RV(K),K=1,M)

55 FORMAT (1H,8F10.5)
WRITE (6,65) AVE

65 FORMAT (1H,'AVERAGE =',F10.5)
CALL USRSDO (PAK)
ENCODE (80,78,BUFF,I1TRN) M
CALL USRSDW(BUFF)
DO 75 Iv=1,M,8
[ K=[V+7
ENCODE (80,77,BUFF,ITRN) (Rv(L),L=1V,[K)

77 FORMAT (8F10.5)

78 FORMAT (110)

75 CALL USRSDW(BUFF)
CALL USRSDC

300 CONTINUE
GO TO 200
END
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LISTING OF PROGRAM RAIN (Continued)

FUNCTION FNT(X,Y)
IF (Y.LT.{X/2+%)) GO 70 120

G7=1.
G8=1.
L=1DINT(X}
DO 100 I=1,L

G7=G7={X-1)/Y
IF {G7.LT.1E-4) GO TO 110
GB=G8+G7
100 CONTINUE
110 FNI=1.-G8%EXP ((X-1)*L0OG(Y)-Y=-FNG(X})
GO TO 150
120 G8=1./X
G7=G8
DO 130 J=1,50
G7=G7*Y/ (X+J)
IF ((G7*X).LT.1E-4) GO To 140
G8=G8+G7
130 CONTINUE
T40 FNI=GB*EXP (X*LOG(Y)-Y-FNG (X))
150 RETURN
END

FUNCTION FNG(R)
IF (R.LT.4.) GO TO 3260
G=R* (DLOG(R)-1.)+0.5%DL0OG{6.2831853/R)
FNG=G+(1-1/(30%R*R) )/ (12*R)
GO TO 3350
3260 GI=R-IDINT(R)
LG2=IDINT(R} -1
3280 G = 1.-(.57710166~(.98585399-(.87642182-(.8328212-(.5684729
* = (,25482049-.0514993%G1) %G1 ) *G1)*G1) *G1) *G1) %G1’
IF (LG2) "3310,3340, 3320
3310 G = G/R
GO TO 3340
3320 CONTINUE
DO 3330 LGY9=1,LG2
G=G*(G1+LGY)
3330 CONTINUE
3340 FNG=DLOG(G)
3350 RETURN
END
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APPENDIX T
DISTRIBUTIONS AND PROPERTIES OF R AND ?
by Anthony Olsen

In section 6 consideration was given to the number of observations
required to accomplish specific goals. The methodology used consisted
of assuming that the rainfall observations arose from a gamma distribution
with known parameters. This assumption is supported in the earlier
sections, Utilizing the gamma distribution, rainfall data were simulated
and Monte Cario procedures were used to answer questions concerning
sample size, seeding factor and other variables. The purpose of this
appendix 1s to give an alternate appreoach for answering some of the
questions. Specifically, the number of observations required to obtain
the sample average of a rainfall population to a specified accuracy and
the natural variabilities of the sample seeding factor is a function of
the sample size and true seeding factor.

The basic idea of the method utilized is as follows. It is
assumed that the rainfall observations are observed values of a random
variable that has a gamma distribution. From this distributional
assumption, the sample distributions of the sample mean R and the
sample seeding factor F are derived. |t is then a simple'matter to
constru;t the appropriate probaHility statements in answer to questions
of natural variability. The difference between the present approach and
that of section 6 is the manner in which the sample distributions are
chbtained. The latter uses a simulation approach, Each is equally valid.

Let Ry, Ry, «uvy Rn be random samples from a gamma distribution
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with parameter oo and B. By the reproductive property of the gamma

distribution it follows that the sample mean

=

]
=N
I o143

brs
—

has a gamma distribution with parameters na and nR. Moreover, the expected
value of R is 0/B, the same as the original population.

The question of interest is: what is the percent probability that
the sample mean of n observations lies within the specified limits of

<R>? In terms of a probability statement
PrijR - <R>| < b <R>]

gives the probability that R is within 100b percent of <R>. Statements
of the above form only require the use of incomplete gamma tables to
determine the probability, since R has a gamma distribution. Note that
the distribution changes parameters as n changes.

Table | corresponds to table 13 given in section 6 with the prob-

abT1lities calculated using table 7 in Biometrika Tables for Statisticians

by E. S. Pearson and H. 0. Hartley (1966), the normal approximation to
the gamma distribution given by (26.4.14). Abramowitz and Segun (196k)
was utilized for values outside the range of the table,

In comparing the simulated probabilities with the probabilities
given here, two items are of interest. First, note the close agreement
between the tables. Second, note that table 13 gives an approximation

to the actual percent probabilities presented in table I.
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Table VI presents the same situation as table V with the exception

of the change in . The effect of & is readily seen to be an apparent
increase in sample when o is increased. This is as expected theoretic-
ally. The sampling distribution of F depends on o only in the form ma
or ng. Hence, an increase of o increases the product. Furthermore, in
calculating probability statements vy = 2na and V, = 2mx enter as the
degrees of freedom associated with Snedecor's F-distribution.

In the actual application of the distribution of sample seeding
factor, the value of a is not known, but is estimated from both the
seeded and control rainfall. If o is overestimated, the effect is that
the probability statements made will be overly optimistic. For example,

using tables V and ¥l we obtain

Pr[I.S _<_F32.5| N g} .23539
Pr|:1.5 <F 52.5| ;: ?]= -30548.

The change in o from 0.6 to 1.0 has the effect of increasing the degrees
of freedom associated with Snedecor's F-distribution from v; = v, = 6
tov; = v, =10 for m=n = 5. Therefore, in the interpretation of the

probabilities statements some care must be exercised.
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The effect of changing sample size on the probability distribution
of F is apparent from tables | - V. As the sample size increases, the
variance of the distribution decreases. This pattern is present for the
three different true seeding factors considered. Instead of graphing
the probabilities, it is informative to graph the probability density
functions. Figures 1 to 3 illustrate the results. The decrease in
dispersion as the sample size increases is again illustrated. Also, for
a fixed sample size, the dispersion increases with increased seeding
factor. This is most notable when comparing the curves for

{(n =50 and F = 1.0) and (n = 50 and F = 3.008). This is expected since

the variance of F is

2
Fz mo no + ma-1

mo-1/ na{ma-z) .
Table A11-VI. Percent Probability That The Sample Seeding

Factor Will Exceed F When The True Seeding Factor Is
2.0 (i.e., oo = 1.0, -Bc = .00364, Bs = .,00182}.

Sample Size n

Fo 5 10 20 50
0.0 100.00 100.00 100.00 100.00
0.5 98.042 99.842 99.999 100.00
0.8 91.763 97.657 99.763 100.00
1.2 78.328 86.885 94. 447 99.414
1.5 67.103 73.691 81.635 92.347
2.0 50.000 50.000 50.000 50.000
2.5 36.555 31. 141 24,220 13.427
3.0 26.657 18.609 10.206 2.193
4.0 14,49k 6.495 1.567 0.033
5.0 8.236 2.342 0.237 0.000
6.0 4.893 0.890 0.037 0.000
7.0 3.044 0.367 0.007 0.000
8.0 1.958 0.158 0.001 0.000
9.0 1.309 0.074 0.000 0.000
10.0 0.900 0.036 0.000 0.000
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Table AII-IV. Percent Probability That The Sample Seeding Factor Will
Execeed F, When The True Seeding Factor 1s 3.008 (i.e., v = .6, B_ =
.00121, B, = .00364), °

Sample Size n

Fo 5 10 20 50

0.0 100.00 100.00 100.00 100.00
0.5 97.68 99.79 99.99 100.00
0.8 93.41 98.51 99.90 100.00
1.2 85.59 93.73 98.56 99.97
1.5 79.10 87.87 95,24 99.60
2.0 68.37 75.49 83.79 94,15
2.5 58.60 62.31 67.28 76.15
3.0 50.13 50.18 50.26 50.42
4.o 36.91 31.47 24,53 13.65
5.0 27.63 19.57 11.05 2.60
6.0 21.08 12.31 4,89 0.43
7.0 16.38 7.89 2.18 0.07
8.0 12.96 5.18 1.01 0.01
9.0 10. 41 3.47 0.47 0.00
10.0 8.48 2.38 0.23 0.00

Table A11-V. Percent Probability That The Sample Seeding
Factor Will Exceed Fo When The True Seeding Factor I8
2.0 (Z.e., o = .6, Bc = .00364, Bs = ,00182).

Sample Size n

Fo 5 0 20 50
0.0 100.00 100.00 100.000 100.000
0.5 94.208 98.835 99.940 100.000
0.8 85.525 93.673 98.542 99.973
1.2 72.475 80.553 89.070 97.462
1.5 63.209 - 68.688 75.670 86.562
2.0 50.000 50.000 50.000 50,000
2.5 39.670 35.262 29.453 19.563
3.0 31.7h4 24,650 16.364 5.955
4.0 20.992 12.221 4,824 0.416
5.0 14.476 6.326 1.458 0.027
6.0 10.351 3.433 0.465 0.002
7.0 7.646 1.964 0.163 0.000
8.0 5.792 1.165 0.060 0.000
9.0 L Lok 0.724 0.024 0.000

10.0 3.556 0.465 0.010 0.000
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Table A11-II. Percent Probability That The Sample Seeding
Factor Lies Within the Specified Intervals As A Funciion
of Sample Size for The Raw Data (i.e., o = .6, BS =R

= .00364). ¢

n 5 10 20 50
0 ~ 0.5 20.993 12.216 4.821 0.415
0.5 - 0.8 18.779 23.046 24,632 19.131
0.8 - 1.2 18.619 26.881 37.609 56.301
1.2 - 1.5 9,865 13.207 16.574 18.198
1.5 - 2.0 10.748 12.434 11.543 5.540
2.0 - 2.5 6.521 5.891 3.364 0.388
2.5 - 3.0 4,123 2.892 0.992 0.025
3.0 10.352 3.433 0.465 0.002
Mean 1.50 1.20 1.09 1.034
VYariance 3.75 0.66 0.228 0.075
Std. Deviation 1.936 0.812 0.478 0.274

Table A11-TIT. Percent Probability That The Sample Seeding
Factor Lies Within Specified Intervals When It Is Assumed
That:The True Seeding Factor ig 3.008 (i.e., o = .6,

Bs = .p0121, Bc = .00364}.

Samplie Size n

Interval 5 10 20 50
0.0 - 0.5 2.317 0.205 0.003 0.000
0.5 -~ 0.8 L,278 1.283 0.093 0.000
0.8 - 1.2 7.813 L.785 1.340 0.026
1.2 ~ 1.5 6.495 5.857 3.323 0.377
1.5 - 2.0 10.728 12.378 11.450 5.443
2.0 - 2.5 9.771 13.186 16.507 18.002
2.5 - 3.0 8.471 12.123 17.022 25.736
3.0 - 4.0 13.218 18.712 25.733 36.769
Lo - 5.0 9.279 11.899 13.477 11.048
5.0 - 6.0 6.548 7.259 6.162 2.177
6.0 - 7.0 4,698 L 423 2.710 0.362
7.0 - 8.0 3.422 2.709 1.173 0.055
8.0 - 9.0 2.556 1.714 0.533 0.010
9.0 - 10.0 1.930 1.091 0.241 0.001
10.0 8.476 2.376 0.233 0.000
Mean 4,512 3.610 3.282 3.112
Variance 40,299 5.967 2.068 0.679
Std. Deviation 5.824 2.443 1.438 0.824
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F = 3.008 and ~

m E(F)
20 3.282
50 3.112

An unbiased estimator for the true seediné factor is possible if

o is assumed known. Define

[
|
-

m

F

Then E(E) = mﬁ&l E(E) = %5-= F. Usually, however, & must be estimated.
c

~r

It is possible to substitute in an estimate of a in determining F.

A table analogous to table 14 in section 6 may be constructed
from the distribution of E. The procedure followed is the same as in
table |, the evaluation of probability statements of the form

Pria 5‘? §_b| n,m,a,Rg,Rc1.

It is necessary to transform the probability statement into terms
of a beta random variable and then make use of a table of the incomplete

beta distribution. The necessary transformation is

V1 Bs »
T + V2 Bg F
so that
Pria <FZ bl nsmsu;BS:Bc]

= Pr[(1 + :12_2 b)"'< B < (1+ ;’;-gi a) " n,m,a,Bg,8.]

where B has a beta distribution with parameters mo and nd.
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the sample seeding factor is defined as F = Rg/Re. The sampling distribu-
tion of E is easily determined by recognizing that E; and ﬁ; are independ-
ent gamma distributions with parameters nt, n8g and mo., mB. respectively.
Hence, except for a constant, depending upon the parameters, F has essent-
ially Snedecor's F-distribution. That is, since 2nBsRgs and 2mB_R. have

chi-square distributions, it follows that

2nBsRs/ (2na) _ EE.?

émscﬁg/(Zma) Be

has Snedecor's F-distribution with v, = 2na and vy = 2mx degrees of
freedom. Hence, by specifying the parameters of the gamma distributions
and the sample sizes, the sampling distribution of E is known to be
Bc/Bs times a Snedecor's F-distribution.

FaY
The mean and variance of FS are determined from the mean and var-

iance of Snedecor's F-distribution

maL mo. \Z no -+ mo-3
and
mol=1 ma-1) no (mo-2)

for ma>: and mu>2 respectively.

Hence <F> = E(F) = Be ma
Bg mo~1

and \Iar(l?) = Bzc mCL 2 no-+moi— 1
st mo=1 na(m&-f)
for me>1 and ma>2 respectively. In general, E(F)3F so that on the average
if F is the estimator for seeding factor, then the actual seeding factor

is being overestimated. As the control sample size increases, the bias

decreases. For example, let a = .6, B = .00121 and Be = .00364, then
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Table Al11-I. Percent Probability That The Sample Mean of n
Cases Lies Within Specified Limits of <R>. (Probabilities
Obtained From Gamma Tables.)

A. Raw data (o = .6, B = .00364)

n <5% <10% <20% >30% <1/2 >2

5 8.218 13.420 26.696 60.350 19.115 6.197
10 9.615 19.7128 37.493 45,728 8.392 2.034
20 13.645 26.937 51.302 29,154 2.009 0.252
50 21.456 41.617 72.999 9,654 0.042 0.001

B. Transformed data (a = 7, B = 2.38620)

n <5% <10% <20% >30%

5 23.233 L4y 636 76.666 7.324
10 32.425 59,805 90.732 1.266
20 L4, 600 77.090 98.192 0.057
50 65.064 93.885 99.976 0.000

The second major investigation concerns the natural variability of
the sampie seeding factor F. In section 6 a simulated "seeding'' experimen
was performed using the assumption that the rainfall observations were a
random sample from a gamma distribution. |t was assumed that the true
seeding factor was one, i.e. that the control and seeded observations
were from the same distribution. in the following development the.sampl-
ing distribution of E will be determined when 1t is assumed that the
seeded rainfall R;,, ..., Rg, is a random sample of n observations from
a gamma distribution with parameters o and 85; and Rc1’ cees Rep is a
random sample of m observations from a gamma distribution with parameters
o and B.. Note that the shape parameters are identical for the two
populations.

The actual seeding factor is defined by F = <R>g/<R>. = B./Bs and
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